Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Zinc Excess Induces a Hypoxia-Like Response by Inhibiting Cysteine Oxidases in Poplar Roots.

Identifieur interne : 000631 ( Main/Exploration ); précédent : 000630; suivant : 000632

Zinc Excess Induces a Hypoxia-Like Response by Inhibiting Cysteine Oxidases in Poplar Roots.

Auteurs : Laura Dalle Carbonare [Italie] ; Mark D. White [Royaume-Uni] ; Vinay Shukla [Italie] ; Alessandra Francini [Italie] ; Pierdomenico Perata [Italie] ; Emily Flashman [Royaume-Uni] ; Luca Sebastiani [Italie] ; Francesco Licausi [Italie]

Source :

RBID : pubmed:31019003

Descripteurs français

English descriptors

Abstract

Poplar (Populus spp.) is a tree species considered for the remediation of soil contaminated by metals, including zinc (Zn). To improve poplar's capacity for Zn assimilation and compartmentalization, it is necessary to understand the physiological and biochemical mechanisms that enable these features as well as their regulation at the molecular level. We observed that the molecular response of poplar roots to Zn excess overlapped with that activated by hypoxia. Therefore, we tested the effect of Zn excess on hypoxia-sensing components and investigated the consequence of root hypoxia on poplar fitness and Zn accumulation capacity. Our results suggest that high intracellular Zn concentrations mimic iron deficiency and inhibit the activity of the oxygen sensors Plant Cysteine Oxidases, leading to the stabilization and activation of ERF-VII transcription factors, which are key regulators of the molecular response to hypoxia. Remarkably, excess Zn and waterlogging similarly decreased poplar growth and development. Simultaneous excess Zn and waterlogging did not exacerbate these parameters, although Zn uptake was limited. This study unveils the contribution of the oxygen-sensing machinery to the Zn excess response in poplar, which may be exploited to improve Zn tolerance and increase Zn accumulation capacity in plants.

DOI: 10.1104/pp.18.01458
PubMed: 31019003
PubMed Central: PMC6752924


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Zinc Excess Induces a Hypoxia-Like Response by Inhibiting Cysteine Oxidases in Poplar Roots.</title>
<author>
<name sortKey="Carbonare, Laura Dalle" sort="Carbonare, Laura Dalle" uniqKey="Carbonare L" first="Laura Dalle" last="Carbonare">Laura Dalle Carbonare</name>
<affiliation wicri:level="1">
<nlm:affiliation>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa</wicri:regionArea>
<placeName>
<settlement type="city">Pise</settlement>
<region nuts="2">Toscane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="White, Mark D" sort="White, Mark D" uniqKey="White M" first="Mark D" last="White">Mark D. White</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Chemistry, University of Oxford, Oxford OX1 3TA</wicri:regionArea>
<orgName type="university">Université d'Oxford</orgName>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shukla, Vinay" sort="Shukla, Vinay" uniqKey="Shukla V" first="Vinay" last="Shukla">Vinay Shukla</name>
<affiliation wicri:level="1">
<nlm:affiliation>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa</wicri:regionArea>
<placeName>
<settlement type="city">Pise</settlement>
<region nuts="2">Toscane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Francini, Alessandra" sort="Francini, Alessandra" uniqKey="Francini A" first="Alessandra" last="Francini">Alessandra Francini</name>
<affiliation wicri:level="1">
<nlm:affiliation>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa</wicri:regionArea>
<placeName>
<settlement type="city">Pise</settlement>
<region nuts="2">Toscane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Perata, Pierdomenico" sort="Perata, Pierdomenico" uniqKey="Perata P" first="Pierdomenico" last="Perata">Pierdomenico Perata</name>
<affiliation wicri:level="1">
<nlm:affiliation>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa</wicri:regionArea>
<placeName>
<settlement type="city">Pise</settlement>
<region nuts="2">Toscane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Flashman, Emily" sort="Flashman, Emily" uniqKey="Flashman E" first="Emily" last="Flashman">Emily Flashman</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Chemistry, University of Oxford, Oxford OX1 3TA</wicri:regionArea>
<orgName type="university">Université d'Oxford</orgName>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sebastiani, Luca" sort="Sebastiani, Luca" uniqKey="Sebastiani L" first="Luca" last="Sebastiani">Luca Sebastiani</name>
<affiliation wicri:level="1">
<nlm:affiliation>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa</wicri:regionArea>
<placeName>
<settlement type="city">Pise</settlement>
<region nuts="2">Toscane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Licausi, Francesco" sort="Licausi, Francesco" uniqKey="Licausi F" first="Francesco" last="Licausi">Francesco Licausi</name>
<affiliation wicri:level="1">
<nlm:affiliation>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy francesco.licausi@unipi.it.</nlm:affiliation>
<country wicri:rule="url">Italie</country>
<wicri:regionArea>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa</wicri:regionArea>
<placeName>
<settlement type="city">Pise</settlement>
<region nuts="2">Toscane</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Biology Department, University of Pisa, 56126 Pisa, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Biology Department, University of Pisa, 56126 Pisa</wicri:regionArea>
<placeName>
<settlement type="city">Pise</settlement>
<region nuts="2">Toscane</region>
</placeName>
<orgName type="university">Université de Pise</orgName>
<placeName>
<settlement type="city">Pise</settlement>
<region type="region" nuts="2">Toscane</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31019003</idno>
<idno type="pmid">31019003</idno>
<idno type="doi">10.1104/pp.18.01458</idno>
<idno type="pmc">PMC6752924</idno>
<idno type="wicri:Area/Main/Corpus">000928</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000928</idno>
<idno type="wicri:Area/Main/Curation">000928</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000928</idno>
<idno type="wicri:Area/Main/Exploration">000928</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Zinc Excess Induces a Hypoxia-Like Response by Inhibiting Cysteine Oxidases in Poplar Roots.</title>
<author>
<name sortKey="Carbonare, Laura Dalle" sort="Carbonare, Laura Dalle" uniqKey="Carbonare L" first="Laura Dalle" last="Carbonare">Laura Dalle Carbonare</name>
<affiliation wicri:level="1">
<nlm:affiliation>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa</wicri:regionArea>
<placeName>
<settlement type="city">Pise</settlement>
<region nuts="2">Toscane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="White, Mark D" sort="White, Mark D" uniqKey="White M" first="Mark D" last="White">Mark D. White</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Chemistry, University of Oxford, Oxford OX1 3TA</wicri:regionArea>
<orgName type="university">Université d'Oxford</orgName>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shukla, Vinay" sort="Shukla, Vinay" uniqKey="Shukla V" first="Vinay" last="Shukla">Vinay Shukla</name>
<affiliation wicri:level="1">
<nlm:affiliation>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa</wicri:regionArea>
<placeName>
<settlement type="city">Pise</settlement>
<region nuts="2">Toscane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Francini, Alessandra" sort="Francini, Alessandra" uniqKey="Francini A" first="Alessandra" last="Francini">Alessandra Francini</name>
<affiliation wicri:level="1">
<nlm:affiliation>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa</wicri:regionArea>
<placeName>
<settlement type="city">Pise</settlement>
<region nuts="2">Toscane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Perata, Pierdomenico" sort="Perata, Pierdomenico" uniqKey="Perata P" first="Pierdomenico" last="Perata">Pierdomenico Perata</name>
<affiliation wicri:level="1">
<nlm:affiliation>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa</wicri:regionArea>
<placeName>
<settlement type="city">Pise</settlement>
<region nuts="2">Toscane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Flashman, Emily" sort="Flashman, Emily" uniqKey="Flashman E" first="Emily" last="Flashman">Emily Flashman</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Chemistry, University of Oxford, Oxford OX1 3TA</wicri:regionArea>
<orgName type="university">Université d'Oxford</orgName>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sebastiani, Luca" sort="Sebastiani, Luca" uniqKey="Sebastiani L" first="Luca" last="Sebastiani">Luca Sebastiani</name>
<affiliation wicri:level="1">
<nlm:affiliation>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa</wicri:regionArea>
<placeName>
<settlement type="city">Pise</settlement>
<region nuts="2">Toscane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Licausi, Francesco" sort="Licausi, Francesco" uniqKey="Licausi F" first="Francesco" last="Licausi">Francesco Licausi</name>
<affiliation wicri:level="1">
<nlm:affiliation>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy francesco.licausi@unipi.it.</nlm:affiliation>
<country wicri:rule="url">Italie</country>
<wicri:regionArea>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa</wicri:regionArea>
<placeName>
<settlement type="city">Pise</settlement>
<region nuts="2">Toscane</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Biology Department, University of Pisa, 56126 Pisa, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Biology Department, University of Pisa, 56126 Pisa</wicri:regionArea>
<placeName>
<settlement type="city">Pise</settlement>
<region nuts="2">Toscane</region>
</placeName>
<orgName type="university">Université de Pise</orgName>
<placeName>
<settlement type="city">Pise</settlement>
<region type="region" nuts="2">Toscane</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (genetics)</term>
<term>Anaerobiosis (MeSH)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Cysteine Dioxygenase (genetics)</term>
<term>Cysteine Dioxygenase (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Intracellular Space (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Zinc (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation physiologique (génétique)</term>
<term>Anaérobiose (MeSH)</term>
<term>Cysteine dioxygenase (génétique)</term>
<term>Cysteine dioxygenase (métabolisme)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Espace intracellulaire (métabolisme)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Racines de plante (génétique)</term>
<term>Racines de plante (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Zinc (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cysteine Dioxygenase</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Cysteine dioxygenase</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cysteine Dioxygenase</term>
<term>Intracellular Space</term>
<term>Plant Proteins</term>
<term>Plant Roots</term>
<term>Populus</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cysteine dioxygenase</term>
<term>Espace intracellulaire</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Racines de plante</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Anaerobiosis</term>
<term>Biodegradation, Environmental</term>
<term>Gene Expression Regulation, Plant</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Anaérobiose</term>
<term>Dépollution biologique de l'environnement</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Poplar (
<i>Populus</i>
spp.) is a tree species considered for the remediation of soil contaminated by metals, including zinc (Zn). To improve poplar's capacity for Zn assimilation and compartmentalization, it is necessary to understand the physiological and biochemical mechanisms that enable these features as well as their regulation at the molecular level. We observed that the molecular response of poplar roots to Zn excess overlapped with that activated by hypoxia. Therefore, we tested the effect of Zn excess on hypoxia-sensing components and investigated the consequence of root hypoxia on poplar fitness and Zn accumulation capacity. Our results suggest that high intracellular Zn concentrations mimic iron deficiency and inhibit the activity of the oxygen sensors Plant Cysteine Oxidases, leading to the stabilization and activation of ERF-VII transcription factors, which are key regulators of the molecular response to hypoxia. Remarkably, excess Zn and waterlogging similarly decreased poplar growth and development. Simultaneous excess Zn and waterlogging did not exacerbate these parameters, although Zn uptake was limited. This study unveils the contribution of the oxygen-sensing machinery to the Zn excess response in poplar, which may be exploited to improve Zn tolerance and increase Zn accumulation capacity in plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31019003</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>08</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>31</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>180</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2019</Year>
<Month>07</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Zinc Excess Induces a Hypoxia-Like Response by Inhibiting Cysteine Oxidases in Poplar Roots.</ArticleTitle>
<Pagination>
<MedlinePgn>1614-1628</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.18.01458</ELocationID>
<Abstract>
<AbstractText>Poplar (
<i>Populus</i>
spp.) is a tree species considered for the remediation of soil contaminated by metals, including zinc (Zn). To improve poplar's capacity for Zn assimilation and compartmentalization, it is necessary to understand the physiological and biochemical mechanisms that enable these features as well as their regulation at the molecular level. We observed that the molecular response of poplar roots to Zn excess overlapped with that activated by hypoxia. Therefore, we tested the effect of Zn excess on hypoxia-sensing components and investigated the consequence of root hypoxia on poplar fitness and Zn accumulation capacity. Our results suggest that high intracellular Zn concentrations mimic iron deficiency and inhibit the activity of the oxygen sensors Plant Cysteine Oxidases, leading to the stabilization and activation of ERF-VII transcription factors, which are key regulators of the molecular response to hypoxia. Remarkably, excess Zn and waterlogging similarly decreased poplar growth and development. Simultaneous excess Zn and waterlogging did not exacerbate these parameters, although Zn uptake was limited. This study unveils the contribution of the oxygen-sensing machinery to the Zn excess response in poplar, which may be exploited to improve Zn tolerance and increase Zn accumulation capacity in plants.</AbstractText>
<CopyrightInformation>© 2019 American Society of Plant Biologists. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Carbonare</LastName>
<ForeName>Laura Dalle</ForeName>
<Initials>LD</Initials>
<AffiliationInfo>
<Affiliation>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>White</LastName>
<ForeName>Mark D</ForeName>
<Initials>MD</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shukla</LastName>
<ForeName>Vinay</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Francini</LastName>
<ForeName>Alessandra</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Perata</LastName>
<ForeName>Pierdomenico</ForeName>
<Initials>P</Initials>
<Identifier Source="ORCID">0000-0001-9444-0610</Identifier>
<AffiliationInfo>
<Affiliation>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Flashman</LastName>
<ForeName>Emily</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sebastiani</LastName>
<ForeName>Luca</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Licausi</LastName>
<ForeName>Francesco</ForeName>
<Initials>F</Initials>
<Identifier Source="ORCID">0000-0003-4769-441X</Identifier>
<AffiliationInfo>
<Affiliation>PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy francesco.licausi@unipi.it.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Biology Department, University of Pisa, 56126 Pisa, Italy.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BB/M024458/1</GrantID>
<Acronym>BB_</Acronym>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>04</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.13.11.20</RegistryNumber>
<NameOfSubstance UI="D050558">Cysteine Dioxygenase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>J41CSQ7QDS</RegistryNumber>
<NameOfSubstance UI="D015032">Zinc</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000693" MajorTopicYN="N">Anaerobiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050558" MajorTopicYN="N">Cysteine Dioxygenase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042541" MajorTopicYN="N">Intracellular Space</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015032" MajorTopicYN="N">Zinc</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>11</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>04</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31019003</ArticleId>
<ArticleId IdType="pii">pp.18.01458</ArticleId>
<ArticleId IdType="doi">10.1104/pp.18.01458</ArticleId>
<ArticleId IdType="pmc">PMC6752924</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2016 Jan;28(1):160-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26668304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 May 16;320(5878):942-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18436742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2013 Feb 27;14(3):4734-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23446868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Jul 01;14:178</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24985152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Jun;38(6):1094-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25438831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2013 Apr;26(2):197-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23456096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2018 Feb;176(2):1286-1298</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29084901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2014 May 12;29(3):360-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24823379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2018 Jun 1;35(6):1547-1549</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29722887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Apr;202(1):198-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24372442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Oct 23;479(7373):419-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22020282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2005;56:15-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15862088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Feb 11;10(2):e0117571</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25671786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2019 Jan 8;116(2):358-366</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30622213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Nov;65(20):5725-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25080087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2015 Jul;236:37-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26025519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 1998 Apr;2(2):222-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9667939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Oct;166(2):839-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25118254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2018 Jul 27;293(30):11786-11795</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29848548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2019 May;569(7758):714-717</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31092919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Sep;1823(9):1553-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22626733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Feb;140(2):411-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(7):1565-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17585298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Apr;152(4):1986-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20181755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Mar 06;5:3425</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24599061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2011 Nov 22;2:69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22639605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2016 May;39(5):1112-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26729300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Aug 27;4:332</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23986772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2015 Jul;236:1-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26025516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Sep 22;167(1):87-98.e14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27641502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Feb 12;5:30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24575104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2017 Oct;40(10):2333-2346</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28741696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):461-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19005089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Jan;38(1):207-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25158610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2014 Feb 6;53(3):369-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24462115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2018 Feb;176(2):1106-1117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29097391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Apr;62(2):302-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20113439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2015 Jun 1;25(11):1483-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25981794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(9):e44843</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22984573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(4):677-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17286818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18843-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19843695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2017 Oct 23;27(20):3183-3190.e4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29033328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2015;66:345-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25580837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Oct 23;479(7373):415-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22020279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Air Soil Pollut. 2016;227(7):239</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27397942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Inorg Chem. 2016 Dec 19;55(24):12644-12650</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27989191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Aug;15(8):447-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20627801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Mar 23;8:14690</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28332493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2011 May;4(3):546-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21343311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):73-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2008 Jul 4;371(3):468-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18442469</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Oxfordshire</li>
<li>Toscane</li>
</region>
<settlement>
<li>Oxford</li>
<li>Pise</li>
</settlement>
<orgName>
<li>Université d'Oxford</li>
<li>Université de Pise</li>
</orgName>
</list>
<tree>
<country name="Italie">
<region name="Toscane">
<name sortKey="Carbonare, Laura Dalle" sort="Carbonare, Laura Dalle" uniqKey="Carbonare L" first="Laura Dalle" last="Carbonare">Laura Dalle Carbonare</name>
</region>
<name sortKey="Francini, Alessandra" sort="Francini, Alessandra" uniqKey="Francini A" first="Alessandra" last="Francini">Alessandra Francini</name>
<name sortKey="Licausi, Francesco" sort="Licausi, Francesco" uniqKey="Licausi F" first="Francesco" last="Licausi">Francesco Licausi</name>
<name sortKey="Licausi, Francesco" sort="Licausi, Francesco" uniqKey="Licausi F" first="Francesco" last="Licausi">Francesco Licausi</name>
<name sortKey="Perata, Pierdomenico" sort="Perata, Pierdomenico" uniqKey="Perata P" first="Pierdomenico" last="Perata">Pierdomenico Perata</name>
<name sortKey="Sebastiani, Luca" sort="Sebastiani, Luca" uniqKey="Sebastiani L" first="Luca" last="Sebastiani">Luca Sebastiani</name>
<name sortKey="Shukla, Vinay" sort="Shukla, Vinay" uniqKey="Shukla V" first="Vinay" last="Shukla">Vinay Shukla</name>
</country>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="White, Mark D" sort="White, Mark D" uniqKey="White M" first="Mark D" last="White">Mark D. White</name>
</region>
<name sortKey="Flashman, Emily" sort="Flashman, Emily" uniqKey="Flashman E" first="Emily" last="Flashman">Emily Flashman</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000631 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000631 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31019003
   |texte=   Zinc Excess Induces a Hypoxia-Like Response by Inhibiting Cysteine Oxidases in Poplar Roots.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31019003" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020